
UNDERSTANDING CFLOCKS: 
HOW THEY WORK /
HOW THEY CAN HELP OR HURT

Charlie Arehart, Independent Consultant
CF Server Troubleshooter
charlie@carehart.org
@carehart (Slack, Github, X, Fb, Li, Skype, etc.)

Updated Sep 1, 2024



Charlie Arehart @carehart
charlie@carehart.org

 In my experience, folks have a lot of misconceptions about use of cflock
 (cflock or lock script statement)

 Your code may use them a lot (or a lot more than you realize)
 or you may use few of them

 or you may even truly use none

 Either situation could be problematic, under certain circumstances

 Sadly, CF (and Lucee) offers no insight into whether locks are hurting (or helping)



Charlie Arehart @carehart
charlie@carehart.org

TODAY’S TOPICS/DEMOS

 Basic example: what cflock does

 Key control mechanisms…which may NOT do what you presume
 Name vs Scope locks

 Readonly vs exclusive locks

 Lock Timeout
 Throwontimeout

 More examples: including why getting these things wrong can be devastating!

 Related matters, resources for more



Charlie Arehart @carehart
charlie@carehart.org

ME.ABOUT()

 I focus on CF/Lucee server troubleshooting, as an independent consultant
 Assist organizations of all sizes, experience levels

 Work remotely: safe, secure, easy via shared desktop (zoom, meet, teams, etc.)

 Solve most problems in less than an hour, teaching you also as we go

 Satisfaction guaranteed
 More on rates, approach, online calendar, etc at carehart.org/consulting

 But to be clear, I’m not selling anything in this session! 
 Just sharing my experience, and that of others

 Presentation online at carehart.org/presentations



Charlie Arehart @carehart
charlie@carehart.org

BASIC EXAMPLE: WHAT CFLOCK DOES, 
IN A SINGLE REQUEST RUN ALONE

 What would you expect this to do if you ran it, alone?
<cflock timeout="1">

<cfset sleep(5000)>
</cflock>

 Here’s a variant in cfscript (which can be done either of two ways):

//cflock(timeout="1") {
lock timeout="1" {

sleep(5000);
}



Charlie Arehart @carehart
charlie@carehart.org

BASIC EXAMPLE: WHAT CFLOCK DOES, 
IN CONCURRENT REQUESTS

 And what would you expect it if you ran that in two requests at the same time?

 Let’s try it…with some additional info offered to help clarify things
<cfoutput>

<h2>I'm creating a lock and sleeping within it for 5 seconds</h2>
<cfflush>

And I'm willing to wait to obtain a lock for up to 1 second<br><br>
<cflock timeout="1">

<cfset sleep(5000)>
Sleep within lock finished<br>

</cflock>
</cfoutput>



Charlie Arehart @carehart
charlie@carehart.org

WE’LL EVOLVE THESE EXAMPLES

 So we see that locks are more a “gentlemen’s agreement”/crossing guard
 All about whether two or more requests try to obtain same lock at same time

 And there are available NAME and SCOPE attributes giving more control
 Also optional TYPE (readonly or exclusive)

 There’s also a THROWONTIMEOUT to control what should happen upon timeout

 As you can see, these four are not required by CF

 Let’s discuss these next

 Code examples are available online:
 gist.github.com/carehart/



Charlie Arehart @carehart
charlie@carehart.org

KEY CONTROL MECHANISMS



Charlie Arehart @carehart
charlie@carehart.org

LOCK TIMEOUT

 As we saw, this does NOT control how long a lock is held!
 It’s how long a cflock is willing to WAIT to obtain the lock it seeks

 I have a more flexible example, letting us pass in sleep and timeout as URL vars
 Let’s demo

 Key myth busted:
 Lock timeouts do NOT control how long CF will HOLD (or is willing to hold) a lock
 They are solely about how long CF is willing to WAIT to obtain a lock

 Note:
 Lucee doesn’t even require timeout (seems to default to 50 seconds)
 CF docs say timeout of 0 means use requesttimeout

 I find instead it literally sets a 0-second timeout



Charlie Arehart @carehart
charlie@carehart.org

NAME LOCKS

 Notice we didn’t use a NAME or a SCOPE in our first examples
 Locks without either are called “anonymous’ locks

 They affect only calls to the template in which they run

 Giving lock a NAME offers more flexibility:
 Extends the locking to any request using a lock of that name

 Name can literally be anything you want it to be

 Let’s see demo…

 Name can be generated dynamically (is just a string)

 Note that name locks are instance-wide (not app-specific)

 Before we discuss scope locks, let’s first discuss that lock TYPE…



Charlie Arehart @carehart
charlie@carehart.org

LOCK TYPE: READONLY OR EXCLUSIVE

 You may have noticed we had no lock TYPE in our first examples
 If not specified, the type is EXCLUSIVE

 The other option is READONLY

 But we weren’t “reading” anything in our examples (not even a variable)
 The type is more for declaring the intent of what’s going on in the lock

 The key is that if a given lock is held as EXCLUSIVE, it blocks all requests for that lock
 If a lock is READONLY, other requests for that same READONLY lock can run

 But any request for that lock as EXCLUSIVE will be blocked

 Let’s demo…



Charlie Arehart @carehart
charlie@carehart.org

SCOPE LOCKS

 Now finally we can discuss SCOPE locks
 Valid values are SESSION, APPLICATION, SERVER, and REQUEST
 Extends locking to apply to any request using a lock of the same scope

 Essentially the same as a NAME being “the app name” or “the session id”
 Let’s demo (session and app scope locking)…

 Note: while a scope lock is held, another request CAN access that scope!
 Let’s demo (how scope is not “locked”)…

 Request scope lock can be helpful with need for cflock in cfthread
 Key myth busted:

 Scope locks do NOT “lock access” to a scope:
 They are simply a different way of “naming” a lock, like any we’ve seen
 They do not “lock” the scope!



Charlie Arehart @carehart
charlie@carehart.org

AREN’T WE “SUPPOSED TO LOCK”?

 Wait, weren’t we all told we should “lock whenever we access a shared scope variable”?
 This would be primarily session and application, but also server

 Here’s the thing: this was true…when?...anyone?
 Prior to CF6…at the turn of the century, when CF5 and earlier ran on C++

 When CF6 came out, running CF on Java, the need vastly diminished

 Key myth busted:
 We no longer NEED to *ALWAYS* lock access to shared scopes…

 …but aren’t there times we SHOULD?….



Charlie Arehart @carehart
charlie@carehart.org

WHEN “SHOULD” WE CONSIDER LOCKING 
ACCESS TO SHARED SCOPES?

 We DO still need to consider locking our use of shared scopes…but when, primarily?
 On a “RACE CONDITION”

 Essentially, if two requests could run at the same time and modify the same variable

 This is especially an issue when a variable holds an incrementing value
 Two requests COULD run at the same time, and while one reads and increments, the other does

 That said, if code always sets value, that’s rarely an issue, like:
 application.prod_dsn=“mydsn”;

 Key conclusion:
 We SHOULD lock potential “race conditions”



Charlie Arehart @carehart
charlie@carehart.org

WHERE CFLOCKING CAN HELP

• Besides race conditions, where else could cflock help?
• Anytime some action should somehow be single-threaded (only one request at a time)
• This is a frequent use of named, exclusive locks

• That could be about writing to some file, or processing files
• Or even running some tag that’s not well-suited to concurrent access

• There was a time we needed to worry about that regarding cfindex/cfcollection
• See interesting recent example with lucee 6 and cfschedule

• dev.lucee.org/t/lucee-6-1-0-243-all-contexts-settings-being-wiped/14243

• Remember, though: cflock is a gentlemen’s agreement
• If a request tries to access “what is locked” (file, etc.) without using cflock, it can!



Charlie Arehart @carehart
charlie@carehart.org

WHAT ABOUT DATABASE LOCKING?

 This is an interesting one: some people think they should cflock SQL calls
 The thing is, nearly all databases already implement their own locking for us

 Again, your use of cflock does NOT prevent others accessing DB
 It only affects others ALSO using the same lock (name/scope), subject to type

 Key myth busted:
 It’s generally NOT appropriate to rely on CFLOCK to enforce db locking/contention



Charlie Arehart @carehart
charlie@carehart.org

THROWONTIMEOUT

 Finally, we can move on to the last attribute: THROWONTIMEOUT
 It simply controls what should happen if a lock cannot be obtained in TIMEOUT time

 Default is “true”: an error will be thrown, as we saw in very first demo
 Let’s demo with more recent “flexible” code, passing in low timeout for long sleep…

 So what happens if throwontimeout=“false” (or “no”, etc.)?
 Anyone want to guess?
 Does it run the code in the lock anyway?

 NO!

 Let’s demo…
 It literally SKIPS the code in the lock!!!

 Which can be a TERRIBLE underlying cause of subtle bugs: why does xxx not exist?
 Key myth busted:

 Don’t use throwontimeout unless you are VERY careful about and aware of it



Charlie Arehart @carehart
charlie@carehart.org

LOCK CONTENTION: ISSUE/OPTION

 So we’ve seen that locks can be held for a long time
 And technically code WITHIN a lock can HOLD a lock for a long time
 Can be silent killer in a lot of CFML apps
 Key takeway: don’t hold locks any longer than necessary

 Think twice about doing long-running actions within a lock, like cfquery, cfhttp, etc.

 Here’s a related topic: consider nested lock checking
 If you’re locking to “do something that needs to be done”…

 Check WITHIN the lock whether you “still need to do it”. If not, skip “doing it”

 helpx.adobe.com/coldfusion/developing-applications/developing-cfml-
applications/using-persistent-data-and-locking/locking-code-with-
cflock.html#Nestinglocksandavoidingdeadlocks



Charlie Arehart @carehart
charlie@carehart.org

HOW CF AND LUCEE LACK ANY 
DIAGNOSIS OF CFLOCKS

 Wouldn’t it be nice to know how long requests are HOLDING or AWAITING locks?
 Or whether a request had a lock timeout, or ignored one?

 Sadly, neither CF nor Lucee offer any means to track all these, not even in debug info

 Lucee does add a RESULT attribute that can track the executiontime

 And CF/Lucee Admin also has no mechanism to control cflock mechanism
 Nor any means to manage/monitor them

 I feel like this is a missed opportunity, and I’ve asked about it before
 tracker.adobe.com/#/view/CF-3036835

 That’s from 2008! Many votes, nothing ever done :-(



Charlie Arehart @carehart
charlie@carehart.org

RELATED TOPICS WE WON’T DISCUSS

 CF2016 added synchronized arrays/structs (see docs for arraynew)

 CF2018 added runAsync()
 helpx.adobe.com/coldfusion/cfml-reference/coldfusion-functions/functions-m-

r/runasync.html

 helpx.adobe.com/coldfusion/using/asynchronous-programming.html

 modern-cfml.ortusbooks.com/beyond-the-100/asynchronous-programming

 Lucee offers a cfdistributedlock, which supports locks across servers via Redis
 docs.lucee.org/reference/tags/distributedlock.html



Charlie Arehart @carehart
charlie@carehart.org

RESOURCES

 Beware that some resources have misstatements that our examples can prove

 helpx.adobe.com/coldfusion/cfml-reference/coldfusion-tags/tags-j-l/cflock.html

 helpx.adobe.com/coldfusion/developing-applications/developing-cfml-
applications/using-persistent-data-and-locking/locking-code-with-cflock.html

 helpx.adobe.com/coldfusion/developing-applications/developing-cfml-
applications/using-persistent-data-and-locking/examples-of-cflock.html

 docs.lucee.org/reference/tags/lock.html

 carehart.org/blog/2022/6/24/understanding_cflock_cost_part_1

 modern-cfml.ortusbooks.com/cfml-language/locking



Charlie Arehart @carehart
charlie@carehart.org

SUMMARY

 CFLock (and the cfscript cflock/lock) are important tools, powerful
 With power comes responsibility

 We’ve seen the options of anonymous, named, or scope locks
 With optional type of readonly or exclusive
 With timeout that controls how long to WAIT for a lock
 And throwontimeout that can “ignore” a failed request for a lock

 Be careful out there
 Reach out to me with questions on talk/share feedback (direct or publicly)

 Slack, Github, X, Fb, Li, Skype, etc. simply as @carehart
 Email: charlie@carehart.org

 Again, presentation online at carehart.org/presentations


	Understanding cflocks: how they work /�how they can help or hurt
	Slide Number 2
	Today’s Topics/Demos
	Me.about()
	Basic example: what cflock does, �in a single request run alone
	Basic example: what cflock does, �in concurrent requests
	We’ll evolve these examples
	Key control mechanisms
	Lock timeout
	Name locks
	Lock Type: Readonly OR exclusive
	scope locks
	Aren’t we “supposed to lock”?
	When “should” we consider locking access to shared scopes?
	Where cflocking CAN help
	What about database locking?
	Throwontimeout
	lock contention: issue/option
	How CF and Lucee lack any diagnosis of cflocks
	Related topics we won’t discuss
	ResourceS
	Summary

