
UNDERSTANDING CFLOCKS:
HOW THEY WORK /
HOW THEY CAN HELP OR HURT

Charlie Arehart, Independent Consultant
CF Server Troubleshooter
charlie@carehart.org
@carehart (Slack, Github, X, Fb, Li, Skype, etc.)

Updated Sep 1, 2024

Charlie Arehart @carehart
charlie@carehart.org

 In my experience, folks have a lot of misconceptions about use of cflock
 (cflock or lock script statement)

 Your code may use them a lot (or a lot more than you realize)
 or you may use few of them

 or you may even truly use none

 Either situation could be problematic, under certain circumstances

 Sadly, CF (and Lucee) offers no insight into whether locks are hurting (or helping)

Charlie Arehart @carehart
charlie@carehart.org

TODAY’S TOPICS/DEMOS

 Basic example: what cflock does

 Key control mechanisms…which may NOT do what you presume
 Name vs Scope locks

 Readonly vs exclusive locks

 Lock Timeout
 Throwontimeout

 More examples: including why getting these things wrong can be devastating!

 Related matters, resources for more

Charlie Arehart @carehart
charlie@carehart.org

ME.ABOUT()

 I focus on CF/Lucee server troubleshooting, as an independent consultant
 Assist organizations of all sizes, experience levels

 Work remotely: safe, secure, easy via shared desktop (zoom, meet, teams, etc.)

 Solve most problems in less than an hour, teaching you also as we go

 Satisfaction guaranteed
 More on rates, approach, online calendar, etc at carehart.org/consulting

 But to be clear, I’m not selling anything in this session!
 Just sharing my experience, and that of others

 Presentation online at carehart.org/presentations

Charlie Arehart @carehart
charlie@carehart.org

BASIC EXAMPLE: WHAT CFLOCK DOES,
IN A SINGLE REQUEST RUN ALONE

 What would you expect this to do if you ran it, alone?
<cflock timeout="1">

<cfset sleep(5000)>
</cflock>

 Here’s a variant in cfscript (which can be done either of two ways):

//cflock(timeout="1") {
lock timeout="1" {

sleep(5000);
}

Charlie Arehart @carehart
charlie@carehart.org

BASIC EXAMPLE: WHAT CFLOCK DOES,
IN CONCURRENT REQUESTS

 And what would you expect it if you ran that in two requests at the same time?

 Let’s try it…with some additional info offered to help clarify things
<cfoutput>

<h2>I'm creating a lock and sleeping within it for 5 seconds</h2>
<cfflush>

And I'm willing to wait to obtain a lock for up to 1 second

<cflock timeout="1">

<cfset sleep(5000)>
Sleep within lock finished

</cflock>
</cfoutput>

Charlie Arehart @carehart
charlie@carehart.org

WE’LL EVOLVE THESE EXAMPLES

 So we see that locks are more a “gentlemen’s agreement”/crossing guard
 All about whether two or more requests try to obtain same lock at same time

 And there are available NAME and SCOPE attributes giving more control
 Also optional TYPE (readonly or exclusive)

 There’s also a THROWONTIMEOUT to control what should happen upon timeout

 As you can see, these four are not required by CF

 Let’s discuss these next

 Code examples are available online:
 gist.github.com/carehart/

Charlie Arehart @carehart
charlie@carehart.org

KEY CONTROL MECHANISMS

Charlie Arehart @carehart
charlie@carehart.org

LOCK TIMEOUT

 As we saw, this does NOT control how long a lock is held!
 It’s how long a cflock is willing to WAIT to obtain the lock it seeks

 I have a more flexible example, letting us pass in sleep and timeout as URL vars
 Let’s demo

 Key myth busted:
 Lock timeouts do NOT control how long CF will HOLD (or is willing to hold) a lock
 They are solely about how long CF is willing to WAIT to obtain a lock

 Note:
 Lucee doesn’t even require timeout (seems to default to 50 seconds)
 CF docs say timeout of 0 means use requesttimeout

 I find instead it literally sets a 0-second timeout

Charlie Arehart @carehart
charlie@carehart.org

NAME LOCKS

 Notice we didn’t use a NAME or a SCOPE in our first examples
 Locks without either are called “anonymous’ locks

 They affect only calls to the template in which they run

 Giving lock a NAME offers more flexibility:
 Extends the locking to any request using a lock of that name

 Name can literally be anything you want it to be

 Let’s see demo…

 Name can be generated dynamically (is just a string)

 Note that name locks are instance-wide (not app-specific)

 Before we discuss scope locks, let’s first discuss that lock TYPE…

Charlie Arehart @carehart
charlie@carehart.org

LOCK TYPE: READONLY OR EXCLUSIVE

 You may have noticed we had no lock TYPE in our first examples
 If not specified, the type is EXCLUSIVE

 The other option is READONLY

 But we weren’t “reading” anything in our examples (not even a variable)
 The type is more for declaring the intent of what’s going on in the lock

 The key is that if a given lock is held as EXCLUSIVE, it blocks all requests for that lock
 If a lock is READONLY, other requests for that same READONLY lock can run

 But any request for that lock as EXCLUSIVE will be blocked

 Let’s demo…

Charlie Arehart @carehart
charlie@carehart.org

SCOPE LOCKS

 Now finally we can discuss SCOPE locks
 Valid values are SESSION, APPLICATION, SERVER, and REQUEST
 Extends locking to apply to any request using a lock of the same scope

 Essentially the same as a NAME being “the app name” or “the session id”
 Let’s demo (session and app scope locking)…

 Note: while a scope lock is held, another request CAN access that scope!
 Let’s demo (how scope is not “locked”)…

 Request scope lock can be helpful with need for cflock in cfthread
 Key myth busted:

 Scope locks do NOT “lock access” to a scope:
 They are simply a different way of “naming” a lock, like any we’ve seen
 They do not “lock” the scope!

Charlie Arehart @carehart
charlie@carehart.org

AREN’T WE “SUPPOSED TO LOCK”?

 Wait, weren’t we all told we should “lock whenever we access a shared scope variable”?
 This would be primarily session and application, but also server

 Here’s the thing: this was true…when?...anyone?
 Prior to CF6…at the turn of the century, when CF5 and earlier ran on C++

 When CF6 came out, running CF on Java, the need vastly diminished

 Key myth busted:
 We no longer NEED to *ALWAYS* lock access to shared scopes…

 …but aren’t there times we SHOULD?….

Charlie Arehart @carehart
charlie@carehart.org

WHEN “SHOULD” WE CONSIDER LOCKING
ACCESS TO SHARED SCOPES?

 We DO still need to consider locking our use of shared scopes…but when, primarily?
 On a “RACE CONDITION”

 Essentially, if two requests could run at the same time and modify the same variable

 This is especially an issue when a variable holds an incrementing value
 Two requests COULD run at the same time, and while one reads and increments, the other does

 That said, if code always sets value, that’s rarely an issue, like:
 application.prod_dsn=“mydsn”;

 Key conclusion:
 We SHOULD lock potential “race conditions”

Charlie Arehart @carehart
charlie@carehart.org

WHERE CFLOCKING CAN HELP

• Besides race conditions, where else could cflock help?
• Anytime some action should somehow be single-threaded (only one request at a time)
• This is a frequent use of named, exclusive locks

• That could be about writing to some file, or processing files
• Or even running some tag that’s not well-suited to concurrent access

• There was a time we needed to worry about that regarding cfindex/cfcollection
• See interesting recent example with lucee 6 and cfschedule

• dev.lucee.org/t/lucee-6-1-0-243-all-contexts-settings-being-wiped/14243

• Remember, though: cflock is a gentlemen’s agreement
• If a request tries to access “what is locked” (file, etc.) without using cflock, it can!

Charlie Arehart @carehart
charlie@carehart.org

WHAT ABOUT DATABASE LOCKING?

 This is an interesting one: some people think they should cflock SQL calls
 The thing is, nearly all databases already implement their own locking for us

 Again, your use of cflock does NOT prevent others accessing DB
 It only affects others ALSO using the same lock (name/scope), subject to type

 Key myth busted:
 It’s generally NOT appropriate to rely on CFLOCK to enforce db locking/contention

Charlie Arehart @carehart
charlie@carehart.org

THROWONTIMEOUT

 Finally, we can move on to the last attribute: THROWONTIMEOUT
 It simply controls what should happen if a lock cannot be obtained in TIMEOUT time

 Default is “true”: an error will be thrown, as we saw in very first demo
 Let’s demo with more recent “flexible” code, passing in low timeout for long sleep…

 So what happens if throwontimeout=“false” (or “no”, etc.)?
 Anyone want to guess?
 Does it run the code in the lock anyway?

 NO!

 Let’s demo…
 It literally SKIPS the code in the lock!!!

 Which can be a TERRIBLE underlying cause of subtle bugs: why does xxx not exist?
 Key myth busted:

 Don’t use throwontimeout unless you are VERY careful about and aware of it

Charlie Arehart @carehart
charlie@carehart.org

LOCK CONTENTION: ISSUE/OPTION

 So we’ve seen that locks can be held for a long time
 And technically code WITHIN a lock can HOLD a lock for a long time
 Can be silent killer in a lot of CFML apps
 Key takeway: don’t hold locks any longer than necessary

 Think twice about doing long-running actions within a lock, like cfquery, cfhttp, etc.

 Here’s a related topic: consider nested lock checking
 If you’re locking to “do something that needs to be done”…

 Check WITHIN the lock whether you “still need to do it”. If not, skip “doing it”

 helpx.adobe.com/coldfusion/developing-applications/developing-cfml-
applications/using-persistent-data-and-locking/locking-code-with-
cflock.html#Nestinglocksandavoidingdeadlocks

Charlie Arehart @carehart
charlie@carehart.org

HOW CF AND LUCEE LACK ANY
DIAGNOSIS OF CFLOCKS

 Wouldn’t it be nice to know how long requests are HOLDING or AWAITING locks?
 Or whether a request had a lock timeout, or ignored one?

 Sadly, neither CF nor Lucee offer any means to track all these, not even in debug info

 Lucee does add a RESULT attribute that can track the executiontime

 And CF/Lucee Admin also has no mechanism to control cflock mechanism
 Nor any means to manage/monitor them

 I feel like this is a missed opportunity, and I’ve asked about it before
 tracker.adobe.com/#/view/CF-3036835

 That’s from 2008! Many votes, nothing ever done :-(

Charlie Arehart @carehart
charlie@carehart.org

RELATED TOPICS WE WON’T DISCUSS

 CF2016 added synchronized arrays/structs (see docs for arraynew)

 CF2018 added runAsync()
 helpx.adobe.com/coldfusion/cfml-reference/coldfusion-functions/functions-m-

r/runasync.html

 helpx.adobe.com/coldfusion/using/asynchronous-programming.html

 modern-cfml.ortusbooks.com/beyond-the-100/asynchronous-programming

 Lucee offers a cfdistributedlock, which supports locks across servers via Redis
 docs.lucee.org/reference/tags/distributedlock.html

Charlie Arehart @carehart
charlie@carehart.org

RESOURCES

 Beware that some resources have misstatements that our examples can prove

 helpx.adobe.com/coldfusion/cfml-reference/coldfusion-tags/tags-j-l/cflock.html

 helpx.adobe.com/coldfusion/developing-applications/developing-cfml-
applications/using-persistent-data-and-locking/locking-code-with-cflock.html

 helpx.adobe.com/coldfusion/developing-applications/developing-cfml-
applications/using-persistent-data-and-locking/examples-of-cflock.html

 docs.lucee.org/reference/tags/lock.html

 carehart.org/blog/2022/6/24/understanding_cflock_cost_part_1

 modern-cfml.ortusbooks.com/cfml-language/locking

Charlie Arehart @carehart
charlie@carehart.org

SUMMARY

 CFLock (and the cfscript cflock/lock) are important tools, powerful
 With power comes responsibility

 We’ve seen the options of anonymous, named, or scope locks
 With optional type of readonly or exclusive
 With timeout that controls how long to WAIT for a lock
 And throwontimeout that can “ignore” a failed request for a lock

 Be careful out there
 Reach out to me with questions on talk/share feedback (direct or publicly)

 Slack, Github, X, Fb, Li, Skype, etc. simply as @carehart
 Email: charlie@carehart.org

 Again, presentation online at carehart.org/presentations

	Understanding cflocks: how they work /�how they can help or hurt
	Slide Number 2
	Today’s Topics/Demos
	Me.about()
	Basic example: what cflock does, �in a single request run alone
	Basic example: what cflock does, �in concurrent requests
	We’ll evolve these examples
	Key control mechanisms
	Lock timeout
	Name locks
	Lock Type: Readonly OR exclusive
	scope locks
	Aren’t we “supposed to lock”?
	When “should” we consider locking access to shared scopes?
	Where cflocking CAN help
	What about database locking?
	Throwontimeout
	lock contention: issue/option
	How CF and Lucee lack any diagnosis of cflocks
	Related topics we won’t discuss
	ResourceS
	Summary

